JEE MAIN + ADVANCED

 MATHEMATICS
TOPIC NAME
 TRIGONOMETRIC

 EQUATION

 EQUATION}
(PRACTICE SHEET)

LEVEL - 1

Question based on
 General solution of standard Trigonometrical Equation

Q. 1 The general solution of $\tan \left(\frac{2}{3} \theta\right)=\sqrt{3}$ is -
(A) $\frac{3 n \pi}{2}+\frac{\pi}{2} ; n \in \mathrm{I}$
(B) $\frac{\mathrm{n} \pi}{2} ; \pm \frac{\pi}{2} \mathrm{n} \in \mathrm{I}$
(C) $\mathrm{n} \pi \pm \frac{\pi}{2} ; \mathrm{n} \in \mathrm{I}$
(D) None of these
Q. 2 If $\tan \theta+\tan 2 \theta+\tan \theta \tan 2 \theta=1$ then general value of θ is -
(A) $n \pi ; n \in I$
(B) $\mathrm{n} \pi \pm \frac{\pi}{3} ; \mathrm{n} \in \mathrm{I}$
(C) $\frac{\mathrm{n} \pi}{3}+\frac{\pi}{12} ; \mathrm{n} \in \mathrm{I}$
(D) none of these
Q. 3 Find the general value of θ, when $\sec \theta=\frac{2}{\sqrt{3}}$
(A) $n \pi+\frac{\pi}{6}$
(B) $\mathrm{n} \pi-\frac{\pi}{6}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(D) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$
Q. 4 Find the general value of θ, when $\cos \left(\frac{-\theta}{2}\right)=0$
(A) $(\mathrm{n}+1) \pi ; \mathrm{n} \in \mathrm{I}$
(B) $n \pi ; n \in I$
(C) $(2 \mathrm{n}+1) \pi ; \mathrm{n} \in \mathrm{I}$
(D) $2 \mathrm{n} \pi ; \mathrm{n} \in \mathrm{I}$
Q. 5 If $\tan \mathrm{a} \theta-\tan \mathrm{b} \theta=0$, then the values of θ for a series in -
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
Q. 6 Find the general solution of $2 \sin x+\tan x=0$
(A) $n \pi,(3 k \pm 1) \frac{2 \pi}{3} ; k \in I$
(B) $2 \mathrm{n} \pi,(3 \mathrm{k}+1) \frac{2 \pi}{3} ; \mathrm{k} \in \mathrm{I}$
(C) $2 \mathrm{n} \pi,(3 \mathrm{k} \pm 1) \frac{2 \pi}{3} ; \mathrm{k} \in \mathrm{I}$
(D) None of these
Q. 7 The solution set of
$(2 \cos x-1)(3+2 \cos x)=0$ in the interval $0 \leq x \leq 2 \pi$ is-
(A) $\{\pi / 3\}$
(B) $\{\pi / 3,5 \pi / 3\}$
(C) $\left\{\pi / 3,5 \pi / 3, \cos ^{-1}(-3 / 2)\right\}$
(D) None of these
Q. 8 The general solution of the equation $\tan ^{2} \theta+2 \sqrt{3} \tan \theta=1$ is given by -
(A) $\theta=\frac{\pi}{2}$
(B) $\left(\mathrm{n}+\frac{1}{2}\right) \pi$
(C) $(6 n+1) \frac{\pi}{12}$
(D) $\frac{\mathrm{n} \pi}{12}$
Q. 9 If $\cos \theta+\cos 7 \theta+\cos 3 \theta+\cos 5 \theta=0$, then $\theta=$
(A) $\frac{\mathrm{n} \pi}{4} ; \mathrm{n} \in \mathrm{I}$
(B) $\frac{\mathrm{n} \pi}{2} ; \mathrm{n} \in \mathrm{I}$
(C) $\frac{\mathrm{n} \pi}{8} ; \mathrm{n} \in \mathrm{I} ; \mathrm{n} \neq 8 \mathrm{k}$
(D) $\frac{\mathrm{n} \pi}{3} ; \mathrm{n} \in \mathrm{I}$
Q. 10 The value of θ satisfying $\sin 7 \theta=\sin 4 \theta-\sin \theta$ and $0<\theta<\pi / 2$ are -
(A) $\frac{\pi}{9}, \frac{\pi}{4}$
(B) $\frac{\pi}{3}, \frac{\pi}{9}$
(C) $\frac{\pi}{6}, \frac{\pi}{9}$
(D) $\frac{\pi}{3}, \frac{\pi}{4}$
Q. 11 The general solution of equation $\sin ^{2} \theta \sec \theta+\sqrt{3} \tan \theta=0$ is-
(A) $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}+1} \frac{\pi}{3}$
(B) $\theta=n \pi$
(C) $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}+1} \frac{\pi}{6}$
(D) $\theta=\frac{\mathrm{n} \pi}{2}$
Q. 12 If $(1+\tan \theta)(1+\tan \phi)=2$, then $\theta+\phi=$
(A) 30°
(B) 45°
(C) 60°
(D) 75°
Q. 13 If α is a root of $25 \cos ^{2} \theta+5 \cos \theta-12=0$, $\frac{\pi}{2}<\alpha<\pi$, then $\sin 2 \alpha$ is equal to-
(A) $\frac{24}{25}$
(B) $-\frac{24}{25}$
(C) $\frac{13}{18}$
(D) $-\frac{13}{18}$
Q. 14 The general solution of the equation $\cos x+\sec x=2$ is given by-
(A) $2 \mathrm{n} \pi ; \mathrm{n} \in \mathrm{I}$
(B) $n \pi ; n \in I$
(C) $\frac{\mathrm{n} \pi}{4} ; \mathrm{n} \in \mathrm{I}$
(D) $\frac{\mathrm{n} \pi}{2} ; \mathrm{n} \in \mathrm{I}$
Q. 15 The general solution of $\sin x+3 \sin 2 x+\sin 3 x$ $=\cos x+3 \cos 2 x+\cos 3 x$ then in the interval $0 \leq x \leq 2 \pi, x=$
(A) $\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{2 \pi}{3}$
(B) $\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}$
(C) $\frac{4 \pi}{3}, \frac{9 \pi}{3}, \frac{2 \pi}{3}, \frac{13 \pi}{8}$
(D) $\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{3}, \frac{4 \pi}{3}$
Q. 16 The solution set of the equation
$4 \sin \theta \cos \theta-2 \cos \theta-2 \sqrt{3} \sin \theta+\sqrt{3}=0$ in the interval $(0,2 \pi)$ is-
(A) $\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$
(B) $\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
(C) $\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
(D) $\left\{\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}\right\}$
Q. 17 The general value of θ satisfying the equation $\sin ^{2} \theta-2 \cos \theta+\frac{1}{4}=0$
(A) $2 n \pi \pm \frac{\pi}{3}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{4}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(D) None of these
Q. 18 If $\tan \theta+\tan 4 \theta+\tan 7 \theta=\tan \theta \tan 4 \theta \tan 7 \theta$, then $\theta=$
(A) $\frac{n \pi}{4}$
(B) $\frac{n \pi}{7}$
(C) $\frac{\mathrm{n} \pi}{12} ; \mathrm{n} \neq 6(2 \mathrm{k}+1)$
(D) $n \pi$

Question based on
 General solution of square of Trigonometric Equation

Q. 19 If $2 \tan ^{2} \theta=\sec ^{2} \theta$, then the general value of θ is
(A) $n \pi+\frac{\pi}{4} ; n \in \mathrm{I}$
(B) $\mathrm{n} \pi-\frac{\pi}{4} ; \mathrm{n} \in \mathrm{I}$
(C) $\mathrm{n} \pi \pm \frac{\pi}{4} ; \mathrm{n} \in \mathrm{I}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{4} ; \mathrm{n} \in \mathrm{I}$
Q. 20 If $3\left(\sec ^{2} \theta+\tan ^{2} \theta\right)=5$, then the general value of θ is -
(A) $2 n \pi+\frac{\pi}{6}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(C) $n \pi \pm \frac{\pi}{6}$
(D) $n \pi \pm \frac{\pi}{3}$
Q. 21 If $2 \cot ^{2} \theta=\operatorname{cosec}^{2} \theta$, then the general value of θ is-
(A) $n \pi \pm \frac{\pi}{4}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{4}$
(C) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{2}$

Question
 General solution of Trigonometric based on Equation a $\cos \theta+b \sin \theta=\mathbf{c}$

Q. 22 The equation $\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos \mathrm{x}=\mathrm{c}$, where $|c|>\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ has -
(A) A unique solution
(B) Infinite no. of solutions
(C) No solution
(D) None of these
Q. 23 General solution of
$\sin ^{3} x+\cos ^{3} x+\frac{3}{2} \sin 2 x=1$
(A) $x=n \pi$ when n is even integer
(B) $\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{2}$ when n is odd integer
(C) $x=2 n \pi$ when n is odd integer
(D) $x=n \pi-\frac{\pi}{2}$ when n is even integer

Question based on

Most General Value

Q. 24 The most general value of θ which satisfies both the equations $\tan \theta=\sqrt{3}$ and $\operatorname{cosec} \theta=-\frac{2}{\sqrt{3}}$ is
(A) $\mathrm{n} \pi+\frac{4 \pi}{3} ; \mathrm{n} \in \mathrm{I}$
(B) $\mathrm{n} \pi+\frac{2 \pi}{3} ; \mathrm{n} \in \mathrm{I}$
(C) $2 \mathrm{n} \pi+\frac{4 \pi}{3}: \mathrm{n} \in \mathrm{I}$
(D) $2 \mathrm{n} \pi+\frac{2 \pi}{3} ; \mathrm{n} \in \mathrm{I}$

LEVEL- 2

Q. 1 The general solutions of the equation $\sec ^{2} x=\sqrt{2}\left(1-\tan ^{2} x\right)$ are given by-
(A) $n \pi+\frac{\pi}{8}$
(B) $n \pi \pm \frac{\pi}{4}$
(C) $n \pi \pm \frac{\pi}{8}$
(D) None of these
Q. 2 The general solution of the equation
$7 \cos ^{2} x+\sin x \cos x-3=0$ is given by-
(A) $n \pi+\frac{\pi}{2}(n \in I)$
(B) $n \pi-\frac{\pi}{4}(n \in I)$
(C) $\mathrm{n} \pi+\tan ^{-1} \frac{4}{3}(\mathrm{n} \in \mathrm{I})$
(D) $\mathrm{n} \pi-\frac{\pi}{4}, \mathrm{k} \pi+\tan ^{-1} \frac{4}{3}(\mathrm{n}, \mathrm{k} \in \mathrm{I})$
Q. 3 Find the general solution of x, $\cos ^{2} 2 \mathrm{x}+\cos ^{2} 3 \mathrm{x}=1$
(A) $(2 \mathrm{k}+1) \frac{\pi}{10}, \mathrm{k} \in \mathrm{I}$
(B) $(\pi \mathrm{k}+1) \frac{\pi}{10} ; \mathrm{k} \in \mathrm{I}$
(C) $(2 \mathrm{k}-1) \frac{\pi}{10}, \mathrm{k} \in \mathrm{I}$
(D) Both (A) and (C)
Q. 4 The set of values of x for which $\sin x \cdot \cos ^{3} x>\cos x \cdot \sin ^{3} x, 0 \leq x \leq 2 \pi$, is-
(A) $(0, \pi)$
(B) $\left(0, \frac{\pi}{4}\right)$
(C) $\left(\frac{\pi}{4}, \pi\right)$
(D) None of these
Q. 5 The general solution of the equation $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is -
(A) $2 \mathrm{n} \pi \pm \frac{\pi}{4}+\frac{\pi}{12}$
(B) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}+\frac{\pi}{12}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{4}-\frac{\pi}{12}$
(D) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{12}$
Q. 6 If $0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi$ and $\sin x+\sin y=2$ then the value of $x+y$ is-
(A) π
(B) $\pi / 2$
(C) 3π
(D) None of these
Q. 7 If $x \in\left[-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right]$, the greatest positive solution of $1+\sin ^{4} x=\cos ^{2} 3 x$ is-
(A) π
(B) 2π
(C) $5 \pi / 2$
(D) None of these
Q. 8 If $\cos x=\sqrt{1-\sin 2 x}, 0<x<\pi$, then a value of x is-
(A) $\tan ^{-1} 2$
(B) 0
(C) π
(D) None of these
Q. 9 The number of values of x in $[0,5 \pi]$ satisfying the equation $3 \cos 2 x-10 \cos x+7=0$ are-
(A) 5
(B) 6
(C) 8
(D) 10
Q. 10 Total number of solution of $16^{\cos ^{2} \mathrm{x}}+16^{\sin ^{2} \mathrm{x}}=10$ in $\mathrm{x} \in[0,3 \pi]$ is equal to-
(A) 4
(B) 8
(C) 12
(D) 16

LEVEL- 3

Q. 1 The solution of the equation $\log _{2}(\sin x+\cos x)-\log _{2}(\cos x)+1=0:$
(A) $\tan ^{-1}\left(-\frac{1}{2}\right)$
(B) 0
(C) $\tan ^{-1}\left(\frac{1}{2}\right)$
(D) None of these
Q. 2 The set of solution satisfying inequality $|\sin \mathrm{x}|<\frac{1}{2}$ is-
(A) $\left(\mathrm{n} \pi, \mathrm{n} \pi+\frac{\pi}{6}\right)(\mathrm{n} \in \mathrm{I})$
(B) $\left(2 \mathrm{n} \pi, 2 \mathrm{n} \pi+\frac{\pi}{6}\right)$
(C) $\left(\mathrm{n} \pi+\frac{\pi}{6}, \mathrm{n} \pi+\frac{5 \pi}{6}\right)$
(D) None of these
Q. 3 The solution of equation
$13-4 \cos ^{2} \mathrm{x}=12 \sin \mathrm{x}$ is -
(A) $n \pi+(-1)^{\mathrm{n}} \sin ^{-1}\left(\frac{3}{2}\right)$
(B) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \sin ^{-1}\left(-\frac{3}{2}\right)$
(C) $n \pi$
(D) No solution
Q. 4 The solution set of equation $\cos ^{5} \mathrm{x}=1+\sin ^{4} \mathrm{x}$ is-
(A) $n \pi(n \in I)$
(B) $2 \mathrm{n} \pi(\mathrm{n} \in \mathrm{I})$
(C) $4 \mathrm{n} \pi(\mathrm{n} \in \mathrm{I})$
(D) None of these
Q. 5 The number of ordered pairs (x, y) satisfying $y=2 \sin x$ and $y=5 x^{2}+2 x+3$ is -
(A) 0
(B) 1
(C) 2
(D) ∞
Q. 6 If $0 \leq x \leq 3 \pi, 0 \leq y \leq 3 \pi$ and $\cos x$. $\sin y=1$ then the possible number of values of the ordered pair (x, y) is -
(A) 6
(B) 12
(C) 8
(D) 15
Q. 7 The most general values of x for which $\sin x+\cos x=\min _{a \in R}\left\{1, a^{2}-4 a+6\right\}$ are given by -
(A) $2 n \pi$
(B) $2 \mathrm{n} \pi+\frac{\pi}{2}$
(C) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \cdot \frac{\pi}{4}-\frac{\pi}{4}$
(D) None of these
Q. 8 The number of distinct solutions of $\sin 5 \theta \cdot \cos 3 \theta=\sin 9 \theta \cdot \cos 7 \theta$ in $[0, \pi / 2]$ is-
(A) 4
(B) 5
(C) 8
(D) 9
Q. 9 The values of $x \in[-2 \pi, 2 \pi]$ such that $\frac{\sin x+i \cos x}{1+i}, i=\sqrt{-1}$, is purely imaginary, are given by -
(A) $n \pi-\frac{\pi}{4}$
(B) $n \pi+\frac{\pi}{4}$
(C) $n \pi$
(D) None of these
Q. 10 The general solution of the equation $\tan 2 \theta \cdot \tan \theta=1$ for $n \in I$ is, θ is equal to-
(A) $(2 n+1) \frac{\pi}{4}$
(B) $(2 n+1) \frac{\pi}{6}$
(C) $(2 n+1) \frac{\pi}{2}$
(D) $(2 n+1) \frac{\pi}{3}$
Q. 11 Number of ordered pairs (a, x) satisfying the equation $\sec ^{2}(a+2) x+a^{2}-1=0 ;-\pi<x<\pi$ is-
(A) 2
(B) 1
(C) 3
(D) Infinite
Q. 12 The general solution of the equation

$$
\sin ^{50} \mathrm{x}-\cos ^{50} \mathrm{x}=1 \text { is- }
$$

(A) $2 n \pi+\frac{\pi}{2}$
(B) $2 n \pi+\frac{\pi}{3}$
(C) $n \pi+\frac{\pi}{2}$
(D) $n \pi+\frac{\pi}{3}$
Q. 13 For any real value of $\theta \neq \pi$, the value of the expression $y=\frac{\cos ^{2} \theta-1}{\cos ^{2} \theta+\cos \theta}$ is-
(A) $1 \leq y \leq 2$
(B) $\mathrm{y}<0$ and $\mathrm{y}>2$
(C) $-1 \leq y \leq 1$
(D) $\mathrm{y} \geq 1$
Q. 14 Total number of integral values of ' n ' so that $\sin x(\sin x+\cos x)=n$ has at least one solution is-
(A) 2
(B) 1
(C) 3
(D) Zero
Q. 15 If $r>0,-\pi \leq \theta \leq \pi$ and r, θ satisfy $r \sin \theta=3$ and $r=4(1+\sin \theta)$, then the number of possible solutions of the pair (r, θ) is-
(A) 2
(B) 4
(C) 0
(D) Infinite
Q. 16 The value of θ satisfying
$3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-3 \sin ^{2} \theta=0$ are-
(A) $\mathrm{n} \pi-\frac{2 \pi}{3}, \mathrm{n} \pi+\frac{\pi}{6}$
(B) $\mathrm{n} \pi-\frac{\pi}{3}, \mathrm{n} \pi+\frac{\pi}{6}$
(C) $2 \mathrm{n} \pi-\frac{\pi}{3}, \mathrm{n} \pi$
(D) $2 \mathrm{n} \pi+\frac{\pi}{3}, \mathrm{n} \pi$

Statement type Questions

Each of the questions given below consists of

Statement - I and Statement - II. Use the following

Key to choose the appropriate answer.
(A) If both Statement- I and Statement- II are be true, and Statement-II is the correct explanation of Statement- I.
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - I.
(C) If Statement - I is true but Statement - II is false.
(D) If Statement - I is false but Statement - II is true.
Q. 17 Statement I : If $\cos \theta=-\frac{1}{2}$ then general solution for θ is $2 \mathrm{n} \pi \pm \frac{\pi}{6}$.
Statement II: If $\cos \theta=\cos \alpha$, then $\theta=2 n \pi \pm \alpha$
Q. 18 Statement I: If $\tan \mathrm{m} \theta+\cot \mathrm{n} \theta=0$ then general value of $\theta=\frac{(2 r+1) \pi}{2(m-n)}$ where $r \in I$.

Statement II : If $\tan \theta=\cot \alpha \quad \therefore \theta=\mathrm{r} \pi+\alpha$
Q. 19 Statement I: $\cot \theta-\tan \theta=2$, then
$\theta=(4 n+1) \frac{\pi}{8}$
Statement II : $\sin 2 \mathrm{x}+\cos 2 \mathrm{x}+\sin \mathrm{x}+\cos \mathrm{x}+1=0$ has no solution in the $I^{\text {st }}$ quadrant.

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 Find the no. of roots of the equation $\tan x+\sec x=2 \cos x$ in the interval $[0,2 \pi]-$
[AIEEE-2002]
(A) 1
(B) 2
(C) 3
(D) 4
Q. 2 General solution of $\tan 5 \theta=\cot 2 \theta$ is-
[AIEEE-2002]
(A) $\theta=\frac{\mathrm{n} \pi}{7}+\frac{\pi}{14}$
(B) $\theta=\frac{\mathrm{n} \pi}{7}+\frac{\pi}{5}$
(C) $\theta=\frac{n \pi}{7}+\frac{\pi}{2}$
(D) None of these
Q. 3 The number of values of x in the interval $[0,3 \pi]$ satisfying the equation $2 \sin ^{2} x+5 \sin x-3=0$ is -
[AIEEE-2006]
(A) 6
(B) 1
(C) 2
(D) 4
Q. 4 If $0<x<\pi$, and $\cos x+\sin x=\frac{1}{2}$, then $\tan \mathrm{x}$ is -
[AIEEE-2006]
(A) $(4-\sqrt{7}) / 3$
(B) $-(4+\sqrt{7}) / 3$
(C) $(1+\sqrt{7}) / 4$
(D) $(1-\sqrt{7}) / 4$
Q. 5 The possible values of $\theta \in(0, \pi)$ such that $\sin (\theta)+\sin (4 \theta)+\sin (7 \theta)=0$ are -
[AIEEE-2011]
(A) $\frac{\pi}{4}, \frac{5 \pi}{12}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
(B) $\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{35 \pi}{36}$
(C) $\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
(D) $\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{4 \pi}{9}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$

SECTION-B

Q. 1 The number of solutions of the equation $\tan \mathrm{x}+\sec \mathrm{x}=2 \cos \mathrm{x}$ lying in the interval $[0,2 \pi]$ is
[IIT-1993]
(A) 0
(B) 1
(C) 2
(D) 3
Q. 2 Let $2 \sin ^{2} \mathrm{x}+3 \sin \mathrm{x}-2>0$ and $\mathrm{x}^{2}-\mathrm{x}-2<0$ (x is measured in radians). Then x lies in the interval-
[IIT-1994]
(A) $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
(B) $\left(-1, \frac{5 \pi}{6}\right)$
(C) $(-1,2)$
(D) $\left(\frac{\pi}{6}, 2\right)$
Q. 3 The number of all possible triplets $\left(a_{1}, a_{2}, a_{3}\right)$ such that $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ for all x is-
[IIT-1994]
(A) 0
(B) 1
(C) 2
(D) infinite
Q. 4 The smallest positive root of the equation $\tan \mathrm{x}-\mathrm{x}=0$ lies on-
[IIT-1994]
(A) $\left(0, \frac{\pi}{2}\right)$
(B) $\left(\frac{\pi}{2}, \pi\right)$
(C) $\left(\pi, \frac{3 \pi}{2}\right)$
(D) $\left(\frac{3 \pi}{2}, 2 \pi\right)$
Q. 5 General value of θ satisfying equation $\tan ^{2} \theta+\sec 2 \theta=1$ is-
[IIT-1996]
(A) $n \pi$
(B) $\mathrm{n} \pi+\frac{\pi}{3}$
(C) $n \pi-\frac{\pi}{3}$
(D) all of these
Q. 6 The solution set of the system of equations: $x+y=\frac{2 \pi}{3}, \cos x+\cos y=\frac{3}{2}$, where $x \& y$ are real in:
[IIT-1998]
(A) a finite non-empty set
(B) null set
(C) ∞
(D) none of these
Q. 7 The number of values of x in the interval $[0,5 \pi]$ satisfying the equation
$3 \sin ^{2} \mathrm{x}-7 \sin \mathrm{x}+2=0$ is-
[IIT-1998]
(A) 0
(B) 5
(C) 6
(D) 10
Q. 8 The number of integral values of k for which the equation $7 \cos x+5 \sin x=2 k+1$ has a solution is-
[IIT-2002]
(A) 4
(B) 8
(C) 10
(D) 12
Q. 9 For which interval for θ, the inequation
$\left(2 \sin ^{2} \theta-5 \sin \theta+2\right)>0$. When $0<\theta<2 \pi$

[IIT-2006]

(A) $\left(\frac{13 \pi}{48}, 2 \pi\right)$
(B) $\left(0, \frac{\pi}{8}\right) \cup\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
(C) $\left(\frac{\pi}{8}, \frac{5 \pi}{6}\right)$
(D) $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
Q. 10 The number of solutions of the pair of equations $2 \sin ^{2} \theta-\cos 2 \theta=0,2 \cos ^{2} \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is-
[IIT-2007]
(A) zero
(B) one
(C) two
(D) four

Numerical Response Question:

Q. 11 The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{\mathrm{n} \pi}{5}$ for $\mathrm{n}=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is
[IIT-2010]
Q. 12 The positive integer value of $n>3$ satisfying the equation
$\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is.
[IIT-2011]

LEVEL-1

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
Ans.	A	D	C	C	A	A	B	C	C	A	B	B	B	A
Q.No.	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$				
Ans.	B	D	A	C	C	C	A	C	A	C				

LEVEL-2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Ans.	C	D	D	B	A	A	B	A	C	C

LEVEL-3

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	A	D	D	B	A	A	C	D	A	B	C	C	B	A	A
Q.No.	16	17	18	19											
Ans.	B	D	C	B											

LEVEL-4

SECTION-A

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Ans.	B	D	D	B	D

SECTION-B
1.[C] $\tan x+\sec x=2 \cos x$

$$
\begin{aligned}
& \frac{\sin x}{\cos x}+\frac{1}{\cos x}=2 \cos x \\
& \sin x+1=2 \cos ^{2} x \\
& \sin x+1=2-2 \sin ^{2} x \\
& 2 \sin ^{2} x+\sin x-1=0 \\
& 2 \sin ^{2} x+2 \sin x-\sin x-1=0 \\
& 2 \sin x(\sin x+1)-1(\sin x+1)=0 \\
& (2 \sin x-1)(\sin x+1)=0 \\
& \sin x=1 / 2 \text { or } \sin x=-1(\text { not possible }) \\
& \quad x=\pi / 6,5 \pi / 6
\end{aligned}
$$

Hence number of roots $=2$
2.[D] $\quad 2 \sin ^{2} x+3 \sin x-2>0$
$2 \sin ^{2} x+4 \sin x-\sin x-2>0$
$2 \sin x(\sin x+2)-1(\sin x+2)>0$
$(2 \sin x-1)(\sin x+2)>0$
$\sin \mathrm{x}>\frac{1}{2}$
$\mathrm{x} \in\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
$\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-2<0$
$x(x-2)+1(x-2)<0$
$(x+1)(x-2)<0$
$-1<\mathrm{x}<2$
From (i) and (ii) we get
$\pi / 6<x<2$
$x \in(\pi / 6,2)$
3.[D]
$a_{1}+a_{2} \cos 2 x+\frac{1}{2} a_{3}(1-\cos 2 x)=0$
$2 \mathrm{a}_{1}+2 \mathrm{a}_{2} \operatorname{csos} 2 \mathrm{x}+\mathrm{a}_{3}-\mathrm{a}_{3} \cos 2 \mathrm{x}=0$
$\cos 2 x=\left(\frac{2 a_{1}+a_{3}}{a_{3}-2 a_{2}}\right)$
$\cos 2 \mathrm{x}=\frac{2 \mathrm{a}_{1}+\mathrm{a}_{3}}{\mathrm{a}_{3}-2 \mathrm{a}_{2}}$
since $-1 \leq \cos 2 \mathrm{x} \leq 1$
then $-1 \leq \frac{2 \mathrm{a}_{1}+\mathrm{a}_{3}}{\mathrm{a}_{3}-2 \mathrm{a}_{2}} \leq 1$
Hence, Infinite triplet possible.
4.[C] By the graphs of $y=x$ and $y=\tan x$

We see the smallest positive roots of $\tan x=x$ lies in $(\pi, 3 \pi / 2)$
5.[B] $\tan ^{2} \theta+\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=1$
$\frac{\tan ^{2} \theta\left(1-\tan ^{2} \theta\right)+1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=1$
$2 \tan ^{2} \theta-\tan ^{4} \theta+1=1-\tan ^{2} \theta$
$\tan ^{4} \theta-3 \tan ^{2} \theta=0$
$\tan ^{2} \theta\left(\tan ^{2} \theta-3\right)=0$
$\tan ^{2} \theta=0$
$\theta=\mathrm{n} \pi$
$\tan ^{2} \theta=\tan ^{2} \pi / 3$
$\theta=\mathrm{n} \pi \pm \pi / 3$
6.[B] $\cos x+\cos y=3 / 2$
$2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}=3 . / 2$
$2 \cos \frac{\pi}{3} \cos \frac{\mathrm{x}-\mathrm{y}}{2}=3 / 2$
$\cos \frac{x-y}{2}=3 / 2$ which is not possible.
7.[C] By graph

$3 \sin ^{2} \mathrm{x}-6 \sin \mathrm{x}-\sin \mathrm{x}+2=0$
$3 \sin x(\sin x-2)-1(\sin x-2)=0$
$(\sin x-2)(3 \sin x-1)=0$
If $\sin x-2=0$
$\sin x \neq 2$
$\sin x=1 / 3$
Hence no of value lies $[0,5 \pi]=6$
8. [B] $\frac{7}{\sqrt{74}} \cos x+\frac{5}{\sqrt{74}} \sin x=\frac{2 k+1}{\sqrt{74}}$
$\cos (\mathrm{x}-\alpha)=\frac{2 \mathrm{k}+1}{\sqrt{74}}$ where $\alpha=\tan ^{-1} \frac{5}{7}$
$-1 \leq \frac{2 \mathrm{k}+1}{\sqrt{74}} \leq 1$
$-\sqrt{74} \leq 2 k+1 \leq \sqrt{74}$
$\frac{-\sqrt{74}-1}{2} \leq \mathrm{k} \leq \frac{\sqrt{74}-1}{2}$
$\mathrm{k}=-4,-3,-2,-1,0,3,2,1$
No. of integral value of $k=8$
9.[D] $2 \sin ^{2} \theta-5 \sin \theta+2>0$
$2 \sin ^{2} \theta-4 \sin \theta-\sin \theta+2>0$
$2 \sin \theta(\sin \theta-2)-1(\sin \theta-2)>0$
$(2 \sin \theta-1)(\sin \theta-2)>0$

$\theta \in(0, \pi / 6) \cup(5 \pi / 6,2 \pi)$
10. [C] $2 \sin ^{2} \theta-\left(1-2 \sin ^{2} \theta\right)=0$
$4 \sin ^{2} \theta-1=0$
$\sin ^{2} \theta=\frac{1}{4}$
$\sin \theta= \pm \frac{1}{2}$
$\theta=\pi / 6,5 \pi / 6,7 \pi / 6,11 \pi / 6$
$2 \cos ^{2} \theta-3 \sin \theta=0$
$2\left(1-\sin ^{2} \theta\right)-3 \sin \theta=0$
$2 \sin ^{2} \theta+3 \sin \theta-2=0$
$2 \sin ^{2} \theta+4 \sin \theta-\sin \theta-2=0$
$2 \sin \theta(\sin \theta+2)-1(\sin \theta+2)=0$
$(2 \sin \theta-1)(\sin \theta+2)=0$
$\sin \theta \neq-2$
$\sin \theta=\frac{1}{2}=\sin \pi / 6$
$\theta=\pi / 6,5 \pi / 6$
Hence No of pair of sol = 2

$$
\begin{aligned}
& \text { 11.[3] } \tan \theta=\cot 5 \theta \\
& \Rightarrow \cos 6 \theta=0 \\
& \Rightarrow 4 \cos ^{3} 2 \theta-3 \cos 2 \theta=0 \\
& \Rightarrow \cos 2 \theta=0 \text { or } \pm \frac{\sqrt{3}}{2} \\
& \sin 2 \theta=\cos 4 \theta \\
& \Rightarrow 2 \sin ^{2} 2 \theta+2 \sin 2 \theta-\sin 2 \theta-1=0 \\
& \sin 2 \theta=-1 \text { or } \sin 2 \theta=\frac{1}{2} \\
& \cos 2 \theta=0 \text { and } \sin 2 \theta=-1 \\
& \Rightarrow 2 \theta=-\pi / 2 \Rightarrow \theta=-\pi / 4 \\
& \cos \theta=0 \& \sin 2 \theta=\frac{1}{2} \\
& 2 \theta=\pi / 6,5 \pi / 6 \Rightarrow \theta=\frac{\pi}{12}, \frac{5 \pi}{12} \\
& \theta=\frac{-\pi}{4}, \frac{\pi}{12}, \frac{5 \pi}{12}
\end{aligned}
$$

